Emissions inventory of PM2.5 trace elements across the United States.
نویسندگان
چکیده
This paper presents the first National Emissions Inventory (NEI) of fine particulate matter (PM2.5) that includes the full suite of PM2.5 trace elements (atomic number > 10) measured at ambient monitoring sites across the U.S. PM2.5 emissions in the NEI were organized and aggregated into a set of 84 source categories for which chemical speciation profiles are available (e.g., Unpaved Road Dust Agricultural Soil, Wildfires). Emission estimates for ten metals classified as Hazardous Air Pollutants (HAP) were refined using data from a recent HAP NEI. All emissions were spatially gridded, and U.S. emissions maps for dozens of trace elements (e.g., Fe, Ti) are presented for the first time. Nationally, the trace elements emitted in the highest quantities are silicon (3.8 x 10(5) ton/yr), aluminum (1.4 x 10(5) ton/yr), and calcium (1.3 x 10(5) ton/yr). Our chemical characterization of the PM2.5 inventory shows that most of the previously unspeciated emissions are comprised of crustal elements, potassium, sodium, chlorine, and metal-bound oxygen. This work also reveals that the largest PM2.5 sources lacking specific speciation data are off-road diesel-powered mobile equipment, road construction dust, marine vessels, gasoline-powered boats, and railroad locomotives.
منابع مشابه
An LUR/BME Framework to Estimate PM2.5 Explained by on Road Mobile and Stationary Sources
Knowledge of particulate matter concentrations <2.5 μm in diameter (PM2.5) across the United States is limited due to sparse monitoring across space and time. Epidemiological studies need accurate exposure estimates in order to properly investigate potential morbidity and mortality. Previous works have used geostatistics and land use regression (LUR) separately to quantify exposure. This work c...
متن کاملThe wildland fire emission inventory: western United States emission estimates and an evaluation of uncertainty
Biomass burning emission inventories serve as critical input for atmospheric chemical transport models that are used to understand the role of biomass fires in the chemical composition of the atmosphere, air quality, and the climate system. Significant progress has been achieved in the development of regional and global biomass burning emission inventories over the past decade using satellite r...
متن کاملImpacts of prescribed fires on air quality over the Southeastern United States in spring based on modeling and ground/satellite measurements.
Prescribed burning is a large aerosol source in the southeastern United States. Its air quality impact is investigated using 3-D model simulations and analysis of ground and satellite observations. Fire emissions for 2002 are calculated based on a recently developed VISTAS emission inventory. March was selected for the investigation because it is the most active prescribed fire month. Inclusion...
متن کاملEvaluation of real-time PM2.5 forecasts and process analysis for PM2.5 formation over the eastern United States using the Eta-CMAQ forecast model during the 2004 ICARTT study
[1] The performance of the Eta-Community Multiscale Air Quality (CMAQ) modeling system in forecasting PM2.5 and chemical species is assessed over the eastern United States with the observations obtained by aircraft (NOAA P-3 and NASA DC-8) and four surface monitoring networks (AIRNOW, IMPROVE, CASTNet and STN) during the 2004 International Consortium for Atmospheric Research on Transport and Tr...
متن کاملEstimating State-Specific Contributions to PM2.5- and O3-Related Health Burden from Residential Combustion and Electricity Generating Unit Emissions in the United States
BACKGROUND Residential combustion (RC) and electricity generating unit (EGU) emissions adversely impact air quality and human health by increasing ambient concentrations of fine particulate matter (PM2.5) and ozone (O3). Studies to date have not isolated contributing emissions by state of origin (source-state), which is necessary for policy makers to determine efficient strategies to decrease h...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Environmental science & technology
دوره 43 15 شماره
صفحات -
تاریخ انتشار 2009